New Bases for Polynomial-Based Spaces

Authors

  • مریم محمدی دانشکده علوم ریاضی و کامپیوتر، دانشگاه خوارزمی تهران، ایران
Abstract:

Since it is well-known that the Vandermonde matrix is ill-conditioned, while the interpolation itself is not unstable in function space, this paper surveys the choices of other new bases. These bases are data-dependent and are categorized into discretely l2-orthonormal and continuously L2-orthonormal bases. The first one construct a unitary Gramian matrix in the space l2(X) while the later construct a unitary Gramian matrix in the space L2[-1,1]. The first one is defined via a factorization of Vandermonde matrix while the latter is given by a factorization of the Gramian matrix corresponding to monomial bases. A discussion of various matrix factorization (e.g. Cholesky, QR, SVD) provides a variety of different bases with different properties. Numerical results show that matrices of values of the new bases have smaller condition number rather that the common monomial bases. It can also be pointed out that the new introduced bases are good candidates for interpolation.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Polynomial bases for continuous function spaces

Let S ⊂ R denote a compact set with infinite cardinality and C(S) the set of real continuous functions on S. We investigate the problem of polynomial and orthogonal polynomial bases of C(S). In case of S = {s0, s1, s2, . . .} ∪ {σ}, where (sk)k=0 is a monotone sequence with σ = limk→∞ sk, we give a sufficient and necessary condition for the existence of a so-called Lagrange basis. Furthermore, ...

full text

Global optimization of mixed-integer polynomial programming problems: A new method based on Grobner Bases theory

Mixed-integer polynomial programming (MIPP) problems are one class of mixed-integer nonlinear programming (MINLP) problems where objective function and constraints are restricted to the polynomial functions. Although the MINLP problem is NP-hard, in special cases such as MIPP problems, an efficient algorithm can be extended to solve it. In this research, we propose an algorit...

full text

New polynomial-time algorithms for Camion bases

Let M be a finite set of vectors in Rn of cardinality m and H(M) = {{x ∈ Rn : cTx = 0} : c ∈ M} the central hyperplane arrangement represented by M. An independent subset of M of cardinality n is called a Camion basis, if it determines a simplex region in the arrangementH(M). In this paper, we first present a new characterization of Camion bases, in the case whereM is the column set of the node...

full text

Locally linearly independent bases for bivariate polynomial spline spaces

Locally linearly independent bases are constructed for the spaces S r d (4) of polynomial splines of degree d 3r + 2 and smoothness r deened on triangulations, as well as for their superspline subspaces. x1. Introduction Given a regular triangulation 4 of a set of vertices V, let S r d (4) := fs 2 C r (() : sj T 2 P d for all triangles T 2 4g; where P d is the space of polynomials of degree d, ...

full text

On Stable Local Bases for Bivariate Polynomial Spline Spaces

Stable locally supported bases are constructed for the spaces S r d (4) of polynomial splines of degree d 3r + 2 and smoothness r deened on trian-gulations 4, as well as for various superspline subspaces. In addition, we show that for r 1, it is impossible to construct bases which are simultaneously stable and locally linearly independent. x1. Introduction This paper deals with the classical sp...

full text

Integral Orthogonal Bases of Small Height for Real Polynomial Spaces

Let PN (R) be the space of all real polynomials in N variables with the usual inner product 〈 , 〉 on it, given by integrating over the unit sphere. We start by deriving an explicit combinatorial formula for the bilinear form representing this inner product on the space of coefficient vectors of all polynomials in PN (R) of degree ≤ M . We exhibit two applications of this formula. First, given a...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue 23

pages  53- 62

publication date 2020-04-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023